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Abstract—Regularization approaches for the limited-angle re-
construction problem in digital breast tomosynthesis are widely-
used. Though, their benefits depend largely upon a suitable
regularization parameter estimation. We aim to evaluate the
reconstruction quality of precise small contrast features objec-
tively with the help of an automated process. These features were
represented by so-called Landolt ring (LR) structures of descend-
ing sizes contained in an especially designed mammography test
object (Quart Mam/Digi Phantom).

A GPU-based iterative Barzilai-Borwein (BB) algorithm is
applied to solve the inverse reconstruction problem using total
variation (TV) regularization. Exemplarily, we analyzed limited-
angle breast projection images from a commercially available
digital breast tomosynthesis (DBT) system (Siemens Mammomat
Inspiration). We show that the TV regularization parameter and
number of iterations can be chosen in such a way that the
detection rate for the LR features is considerably higher than
that obtained from the manufacturer’s reconstruction (modified
filtered backprojection).

Index Terms—X-ray tomography, computed tomography, re-
construction algorithms, iterative algorithms, mammography,
digital breast tomosynthesis, cone-beam geometry.

I. INTRODUCTION

Breast cancer remains a significant threat to woman’s health
and the earlier the detection, the higher the chances for good
healing prognoses. As tumor size at diagnosis is one of the
main predictive factors for survival, all efforts are made to
improve detection of small lesions. The 2D mammography
is still the standard diagnostic method for screening and
the diagnostic setting, although many studies showed limited
sensitivity in dense breast tissue [1]. Now, that fast detectors
and computers are available, standard tomography has been
revitalized in breast diagnostics. In this technique, a 3D
volume, respectively a stack of 2D slices, is computed by
the use of a few projected X-ray images. The generated
3D information in digital breast tomosynthesis (DBT) should

improve lesion detection through reduction of superimposition.
For reconstruction of the volume there are different algorithms
like filtered back-projection (FBP), shift-and-add (SAA) or
algebraic reconstruction techniques (ART). The results in [2]
indicate that there may also be a substantial advantage in using
TV regularization for microcalcification imaging. In [3] the
influence of TV regularization on digital breast tomosynthesis
data taken from a Hologic Selenia Dimensions system was
analyzed.

In this paper, we investigate iterative image-reconstruction
in DBT based on ART and TV with respect to detection of
small clearly defined contrast features e.g. Landolt rings (LR)
(see Fig. 1,2).

Fig. 1. 2D projection of the Quart Mam/Digi phantom. Step 11 and 12 are
not displayed.

ART formulates the projection of a volume to images as the
system of linear equations

Ax = y, (1)

where x ∈ Rn is an unknown 3D volume composed of n
voxels written as a vector, y ∈ Rpm is the set of p 2D images,
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Fig. 2. A reconstructed Landolt ring sequence at one step of the Quart
Mam/Digi phantom: six LRs at step 10, 200 mAs, 30 kVp, BB reconstruction,
TV λ = 0.2, iterations 1 up to 20. On the right-hand side the corresponding
Siemens Mammomat Inspiration reconstruction at step 10 with 200 mAs is
shown.

each consisting of m pixels. The matrix A ∈ Rpm×n is the
discretization of a line integral operator defined by the X-
ray geometry. Solving (1) means reconstructing the volume.
Since this inverse problem is ill-posed, it is also important
to consider additional information. Other groups have shown,
that TV-regularization leads to a better signal to noise ratio
and to a reduction of streaking artifacts [4], [5], but one
may ask, whether small structures are better recognizable.
With TV-regularization the linear equation becomes a convex
optimization problem of the form

min
x
f(x) := ‖Ax− y‖22 + λTV (x) . (2)

For feasibility reasons, we use a differentiable approximation
of the total variation TV (x) which is defined as

TV (x) :=
∑
ijk

√
d(xi,j,k) + β2 (3)

with a small β > 0 and

d(xi,j,k) := (xi−1,j,k − xi,j,k)2 + (4)
(xi,j−1,k − xi,j,k)2 + (5)
(xi,j,k−1 − xi,j,k)2 (6)

where the indices i, j and k denote the position in the 3D
volume. In [6] the iterative Barzilai-Borwein (BB) solver was
successfully used for reconstruction of low-dose cone-beam
computed tomography (CBCT) images, delivering good results
after just a few (12-30) iterations.

II. MATERIALS AND METHODS

A. Tomosynthesis System

The system that we used for our reconstructions is a
Siemens Mammomat Inspiration. Its X-ray source moves with
an angular range of maximal 50 ◦ and under our operating
conditions between −24.82 ◦ and +21.14 ◦. During this pro-
cess the system exposes 25 projection images with a size of
about 2400×3600 pixels and a pixel spacing of 0.085×0.085
[mm]. The rotation center is at 4.7 cm above the detector and
the distance between the x-tube and the detector is about 66 cm
[7]. We evaluate one series with 30 peak kilovoltage (kVp) and
an overall exposure of 200 mAs (8 mAs per projection), which
is higher than the system’s automatic mode with an exposure

value defined at 105 mAs for 30 kVp for the mammography
phantom.

B. Reconstruction Method

The volume, that we reconstruct, is a box with about
2400× 3600× 47 voxels and a voxel size of 0.085× 0.085×
1mm3. It is located close upon the detector and contains the
whole phantom. To avoid artifacts and minimize the memory
required, our volume is defined exclusively by voxels that are
projected into regions of the phantom. Exterior voxels are set
to 0.

We applied the algorithm by Barzilai and Borwein, which
is based on a Quasi-Newton-Method [8]. Thereby an iteration
step has the form xn+1 = xn−H−1

n ∇f(xn) where Hn is an
approximation to the Hessian of f(x). Barzilai and Borwein
set H−1

n = αnI where αn is given by

αn =
(xn − xn−1)

T (∇f(xn)−∇f(xn−1))

(xn − xn−1)T (xn − xn−1)
(7)

minimizing ‖(xk − xk−1)− αn(∇f(xn)−∇f(xn−1))‖.
Since the total variation is not differentiable as a function of

x, we use the differentiable approximation TV (x) as defined
in (3). Then, the iteration step becomes

xn+1 = xn − αn ( 2A
T (Ax− y) + λ∇(TV (x)) ) . (8)

The influence of TV on the reconstruction process can
be managed by the regularization constant λ in (2) and (8)
respectively. To speed up the reconstruction process forward
and back projection (A and AT , respectively) are written as
shaders running on the graphics processing unit (GPU), see
[9].

C. Quart Phantom

To evaluate the quality of our reconstructions we used a new
mammography phantom, the Quart Mam/Digi phantom [10].
The most interesting features for our reconstruction are the
so-called Landolt rings (see Fig. 1,2). These are special rings
with a gap in one of the four directions: right, left, bottom or
top. The phantom has 12 steps with increasing densities and
each step contains a group of six LRs with diameters from
800µm down to 260µm.

Fig. 1 shows a projection image of the Quart Mam/Digi
phantom. A detailed reconstruction of a group of Landolt
rings is depicted in Fig. 2. Furthermore, in the latter the
identical region from the Siemens Mammomat Inspiration
reconstruction is given. The more LRs are detected correctly
in a reconstruction, the better the image quality is. For a fast
and objective evaluation we implemented a fully automatic
LR detection algorithm based on standardized 12-bit DICOM
input datasets.

D. Automatic Landolt Ring Detection

Fig. 3(a) shows a schematic representation of a LR. To
measure the detection quality of a LR, three features are
calculated (see also Fig. 3(b)):
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Fig. 3. (a) LR with gap on the right side. (b) Marked features: center of ring (dot), path inside the ring (line), path in the gap (dotted line) and circle-path
outside (line). (c) LRs on Step 7, Exposure 99 mAs, Barzilai Borwein reconstruction, TV λ = 0.5 . (d) Visual output of the automatic LR detection for the
first Ring in (c): center, ring and gap are marked correctly. (e) Values on the circle-path through the ring and the gap: the highest peak belongs to the gap.

1) Contrast c, based on the gray value v1 at the center, the
mean value v2 of the intensities along a circular path
on the ring and the mean value v3 on the circle-path
outside: c = ((v1 − v2) + (v3 − v2))/2,

2) Standard deviation sd of the ring values,
3) Difference d between mean gap value and mean ring

value.
The calculations are performed with sub-pixel accuracy using
bilinear interpolation. The positions of the 12 groups of LRs in
the phantom are fix. In order to ensure a more flexible usability
of the detection method, offset jumps from an automatically
detected landmark to the LR groups are used. Caused by small
inaccuracies in the landmark detection, a small search window
of 0.5×0.5×1.0mm3 for searching the center of the first LR
of a group is used - this ensures that the first ring of a group
can be determined correctly. A ring is marked at the position
where the sum

D = ω1c+ ω2sd+ ω3d, withω = (ω1, ω2, ω3) = (3,−1, 1)
(9)

is maximized, varying the center of the LR and the position
of the gap. ω was heuristically defined. A ring is counted as
detected if the detection sum D is greater than a threshold κ
and the attitude of the gap is correctly detected. Suitable values
for the detection threshold κ can be chosen taking the density
range of the reconstructed DICOM datasets into account. The
correct gap positions are known a priori for all LRs of the
phantom.

III. RESULTS

We assign 0.0, 0.1, 0.2, 0.3, 1.0 and 10.0 to the TV
regularization constant λ and compare the reconstructions
using up to 22 iteration steps. The Landolt ring detection
threshold κ is varied to control its influence on the detection
rates.

Fig. 4 shows some volume statistics for assigned λ values
(0, 10−1, 100, 101). On the left side (a) the residual norm ||y−
Ax||2 is plotted versus the iteration number, whereas on the
right side the total variation ||x||TV of the volume is shown. As
one expects, the figure shows decreasing residual norms in (a)
and simultaneously increasing total variations of the volumes
in (b) with respect to the regularization parameter. Already
after 20 iteration steps the desired regularization characteristics
are achieved. The differences within the volume statistics for
λ ∈ [0.1, 0.3] are marginal. Thus they are omitted in Fig. 4.

Fig. 5 shows the LR detection results for assigned λ values
(λ = 0.0, 0.1, 0.2, 0.3 ). Two different LR detection thresholds
κ were used to define a correct ring count D > κ (see
(9)): in Fig. 5 (a) κ = 50 and in (b) κ = 75. For a higher
detection threshold κ less rings were detected e.g. 33 instead
of 38 for the Siemens reconstruction. Our results seem to
be nonsensitive to threshold variations, because of the higher
contrast of our volumes. Both shapes of our data profiles look
nearly identical.
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(a) LR
detection threshold κ = 50
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(b) LR
detection threshold κ = 75

Fig. 5. LR counts for TV reconstructions with different λ values. In
comparison to the Siemens reconstruction λ = 0.1, 0.2, 0.3 values mostly
deliver higher LR counts after 4 iterations.

The computer used for reconstruction had an Intel Core
i7 CPU with 2.97 GHz clock speed and 12 GB RAM. We
used a 64-bit Windows 7 OS; the GPU is a NVIDIA GeForce
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Fig. 4. Iterative reconstruction characteristics for different TV regularization values λ = 0, 10−1, 100, 101: (a) residual norm ||y−Ax||2 and (b) TV norm
||x||TV .

GTX 280. The reconstruction program is compiled as an 32-
bit application. Intermediate reconstruction volumes needed
during the reconstruction process had to be stored on the
hard disk, because of the large size of the Quart Mam/Digi
phantom. The runtime for one iteration was approx. one up to
two minutes.

IV. DISCUSSION

We showed in this paper that the Landolt ring component
of the specific phantom is an adequate tool for the evaluation
of DBT algorithms with respect to the representation of small
dense structures. TV regularization yielded better perceptibil-
ity of the LRs contained in the Quart Mam/Digi phantom,
when the parameter λ is adjusted carefully. With the correct
iteration number we find more rings, than the reconstruction
provided by the manufacturer. A possible explanation for this
is a lower standard deviation sd of the values on the ring and
thus less noise for comparable contrast values, when using the
non-linear TV-regularization.

The following additional steps are planed as future research.
We will systematically evaluate our reconstructions for more
than 20 iterations over the whole exposure range and time.
Investigation and possibly modification of other regularization
methods e.g. the L1 norm are planed. With ongoing im-
provement of the algorithm the required radiation dose could
possibly be further reduced.

We will compare the results of the automatic LR detection
with the reading of radiologists to evaluate reconstruction
quality in a clinical context. Furthermore, we hope that our
method can be applied in the context of limited angle breast
tomography in order to improve the detection of clinical
pathologies (e.g. microcalcifications).

V. CONCLUSION

We conclude that our iterative TV-regularized reconstruction
method can be almost optimally adapted to improve the
depiction of small clearly defined contrast features in limited-
angle cone-beam reconstruction problems.
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