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ABSTRACT

Multi-modal registration is still a big challenge image processing. In this article we presentrétian of the well-

known fast Fourier transform (fft) accelerated roelth for finding the alignment between two datasiets,the rigid

transformation consisting of a rotation as welbhasanslation mapping all regions in both databetenging together in
an optimal manner. Our method can be applied td soglti-modal registration problems as computer dgraphy

(CT)/positron emission tomography (PET) matchingiatching CT data with data obtained by magnetomance
imaging (MRI).

We reformulate the alignment problem into an optation problem concerning a metric measure. Thecpéar form of

the proposed objective function can be exploitedfttaccelerate the translational part of the aiigmt-problem. Thus
the reduced problem can be solved for the threairéeng degrees of freedom of the rotatory part gisstandard
optimizers, such as downbhill-simplex or Powell’sthoal.

A further advantage of our approach is the strafghward parallelization of the objective functisncomputation. Our
implementation on a graphic processing unit (GPigldgd a speedup factor between 5 and 25 depewdirige size of
the data. The results show, that the applicaticea @PU can be highly rewarding for all fft accetedaalgorithms.
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1. INTRODUCTION

The most common approach in multi-modal registrattobased on the concept of mutual information)(Ml
Albeit MI based metric measure has been shown tmbest and generally applicable (see Maes, Fal et
(1997), Mattes, D. et al (2003), and Viola and M/€1997)), a series of drawbacks are known. Itiqdar
the following two facts are problematic: The distions of the random variables needed for comjountaif
mutual information are unknown and their estimatian consume a lot of processor resources; furibrerm
the resulting objective function possesses margl lmaxima (Haber and Modersitzki (2005)).

If both datasets have been recorded with the santeoblogy, it is possible to use the meansquanr err
as a metric. Its main advantage is the possitiilitift-accelerate the optimization process in saiegrees of
freedom. A fast method for the solution of the pwamslational alignment problem was presenteddmt@n
(2001), and a combination of translational andtostadegrees of freedom was introduced in Kovacal et
(2003). Fourier methods, in particular the phasgetation method, are pretty well known and play a
prominent role in 2D image processing and patterayasis (see Castro and Morandim (1987), Pan et al
(2009), Reddy and Chatterji (1996)).

Trying to match CT and PET datasets, we face thewing dilemma: the MI based general approach is
too slow, because it cannot be fft-accelerated thednethods which can be accelerated are notcajbdi to
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multi-modal data. In this article we present anrapph that is not as universal as the conventidfial
method but then can be fft-accelerated. Our alignmeethod is based anetrics of the form
g(f.g)=> wx)|f(x)-g(x)I* .
xO0Q
with Q - a domain inN®, w - a weight function andf,g - arbitrary scalar functions. The weight

function is the most important difference to theesconsidered in Reddy and Chatterji (1996) arsfr€a
and Morandim (1987). Both papers assume that onetitn of the two to be aligned is a rotated and
translated replica of the other one, but for thdtirmiodal data this is almost never true. The pneseof
dissimilar parts has a negative impact on the bifig of the phase correlation method. Therefore ave
going to use an idea similar to that proposed iwt@o (2001), with a weight function as a fragmemaskn

The remainder of this paper is structured as falolw the next section we introduce relevant déding
and mathematics as well as the core algorithm ofnoethod. Section 3 covers the parallelization tef t
algorithm on a GPU, whereby we are also going szuls the performance of the parallelized version.
Experiments with synthetic data are presented aticge 4, whereas section 5 contains some widespread
applications, for which the proposed method yigjdsd results.

2. MATHEMATICS

We consider a three-dimensional dataset as a pefimction f : Q — R. The set of these functions will

be denoted byAbb(Q, R) . To evaluate the distance between two elemdntg from Abb(Q,R), we use
the pseudo metric

d,(f,9) =\/Zw(2)| FR) =g,
X0Q

withw(X) =2 0. d,, is a metric if and only ifw(X) >0CX Q. Using a pseudo metric for distance

estimation enables us to neglect parts of the ddtih are for sure dissimilar in the multi-modatakets.

A rigid body transformationT(C?,Z;') between elements of2, which depends on three rotatory
degrees of freedoti and three translational degrees of freedgmgenerates the operatﬂ?rdefined by
Tla. 2l =Tlr@.¢»).
Therebyf is the continuation of the data recofd from Q to continuous spacRSWhich can be computed

by means of trilinear, nearest neighbor or any roitigrpolation scheme. In our experiments bothhoes
yielded similar results.

With the help ofdwwe can define the objective function

#(f,9:0,{)=d,(f',9)*
with f':= Tl_d’, ZJ( f) beeing the transformed datasgt. measures the quality of a coordinate transform or
rather the quality of a given data matching.
Now we can consider the alignment problem as theviing optimization problem.
Problem 1 (General alignment-problem)
Given f,g from Abb(Q,R), find

(@ ,¢)=argming(f,g9;a,{).
a,{0R3
Initially we consider only the translational pafttbe alignment problem, i.e. the problem of firglitne
best translational movement for a fixed rotatioheiefore we obtain the following reduction of trengral
alignment problem:
Problem 2 (Translational alignment-problem)

Given f,g from Abb(Q, R), evaluate
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#r(f.0:0) = ming(f,g:a,{) = ming(f,9:4,).
From now on we only consider the integer transtetionovements, establishing the" in the equation
above. The objective function for a fixed given by
¢°({a) = 9(F,9:d,{) = 2 W) | F'(X=y) —g(X)
X0Q
with "= 'I:|_5’,6J( f) and Zd [JQ, can be rewritten as:
$(¢q) = 2 W) (X =Cy)* =22 WR) (X =) g(R) + 1 W) g(X)°.
XO0Q XO0Q XO0Q
By using the mirror operatoB( f )(¢) ;= f (—*) and convolution for periodic functions
(f Dg)(y):= 2 f(Yy-X)9(X)
/o]
we get
$p° = t208w)- 2 dS(g m)) + U,
with U, a constant originating from the third term. Theowb equation holds, because of the following
calculation for two periodic functiond;, f, [J Abb(Q, R):

PRACEI AT WAC SIXC OEDWACI I ACORTIARE A Sy

XaQ X'0Q X'0Q

It is well-known, that the convolution of two fufmbs f1 and f2 can be efficiently computed using fft
by:
f,0f, = N (1) TF(1,)).
Wherebylf denotes the Fourier transform and the fadbdepends on the size of the domé&n.

This leads us to the following form of the objeetifunction (see Cowtan (2001) or Dranischnikow
(2008) for more details):

¢ = NS[E(E (12) F (Sw))- 2F (F () F (Swig)) )+ U,
By using fft we can calculate the best translatimﬁ)(n log n) whereas the naive implementation would

result in anO(nz) time complexity. It is easy to transform thesarialae into an efficient parallel algorithm,
which we will discuss in section 3.

We split the general alignment problem 1 into ttamslational alignment problem 2 just mentioned and
the problem of finding the best rotational movemassuming that we had solved problem 2. This l¢ads
the following subproblem.

Problem 3 (Rotatory alignment-problem)

Given f,g from Abb(Q, R), evaluate

ming.(f,q;q).
a0R®

To solve problem 3 we resort to conventional optars such as downhill-simplex from Nelder and
Mead (1965) or Powell's method (Press et al (2002))r experiments clearly indicate, that the downhi
simplex method is more suitable (see table 2)omparison to the initial problem, the search-sgsebeen
reduced to three dimensions. The main advantagehisf procedure is that the objective function

@-(f,0;d) possesses, according to experience, considekgsydcal extrema.
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3. PARALLELIZATION

The evaluation of the objective functigp;(f, ;&) consumes the lion's share of the computation time

and consists of the following steps:

1. Computation of the rotated dataset by meansliokgr interpolation

2. Solving the translational alignment problem:
(a) Squaring the values of the rotatetd skt
(b) Fourier transform
(c) Multiplication (point wise) and addit of vectors in the frequency domain
(d) Inverse Fourier transform
(e) Search for the minimum

Steps 1, 2a and 2c do not demand any communichéitmeen the processes and are therefore easy to
parallelize. It is known, that the Fourier transfio(2b and 2d) possesses a quite high potential for
parallelization (Gupta and Umar (1993), Tong anda&tvauber (1987), and Swarztrauber (1987)). Search
ing for a minimum (2e) is a typical example for wetion (compare Zomaya (1996) or Harris (2007)) caud
be efficiently implemented on most parallel arottitees.

The architecture of our choice for the parallel@matof the algorithm was a NVIDIA GPU. The CUDA-
framework from NVIDIA makes it possible to use alGRithout casting the problem into a graphical API.
Despite the simple handling, a careful implemeatais necessary. Careless memory access can be dev-
astating for the performance because of the absginaecache. However, with texture and shared mgmor
the programmer has enough tools on his disposaléole most of the bottle necks caused by the velati
slow global memory. Furthermore, with CUFFT (NVIDorporation (2007)) an efficient implementation
of the necessary fft routines is available.

We are using textures for computation of the ratatataset because otherwise it is quite challentging
optimize the global memory access. The efficiemtbgl access for steps 2a and 2c is straight forward
because the simple data layout allows the simuttasienemory accesses to be coalesced into a single
memory transaction. The optimal size of the blocds be found in fftw manner (Frigo and Johnson £200
during a testing phase. This ensures that thepssible performance can be reached on differehtsGP

When using real-to-complex in-place Fourier trans® a padding is necessary (see NVIDIA
Corporation (2007) for more details). Due to 818D architecture of the GPU it is more efficienttteat
those padded elements the same way as the othendfi@lements.

Table 1. Comparison of the run times between GPU tiilinear interpolation, CPU with trilinear intesfation and CPU
with nearest neighbor interpolation. Because otéix&ures the GPU has a kind of intrinsic advantags the CPU,
therefore we also offer a comparison with a CPUIémgntation, that applies the less costly neareghbor
interpolation. We used an Intel Core2 Duo 2.4 Ghth WVIDIA 8800GTX (CUDAZ2.1) for this benchmarkingst

Number of voxels in the dataset'. 2

Kind of Computation

N=18 N=19 N=20 N=21 N=22 N=23 N=24 N=25
CPU (time in ms) 99 220 410 870 1800 3500 7100 0004
CPU Nearest Neighboy 42 100 190 400 850 1700 3500 7000
(time in ms)
GPU (time in ms) 22 25 40 63 86 150 290 500
Speedup CPU/GPU 4.5 8.8 10.3 13.8 20.1 23.3 245 .0 28

Table 1 shows the gains, which can be achievedigfr@arallelization on a GPU. The biggest speedup
can be obtained for embarrassingly parallel tafke. computation of the rotated volume profits ernmusty
from the use of textures, which are faster thamtivenal global memory. The fft computation doesyietd
the same speedup because the main part of the aoicatian must pass through the slow global memory.
However the size of the CPU cache is insufficiemtfft on bigger datasets, therefore the speedoifaf
fft increases with the size of the dataset.
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4. EXPERIMENTSWITH SYNTHETIC DATA

Before going to the real life examples, we investtgthe ability to recover the rotation with hefsgnthetic
data. There are two major questions to answer fifsteone is which methodownhill-simplex or Powell’'s
method yields better results and is more suitabtethe second one is, what is the probability ofifig the
right rotation.

We used two kinds of data: Rotations uniformly rilistted over the whole range and only rotationsaup
45° but otherwise uniformly distributed. Both 1228k128-datasets were cut out from a bigger CT velum
and share an identical region, which is preciselgwin. This scenario is similar to section 5.3, camspalso
figure 2. A matching was considered successful,ntiee inaccuracy of the calculated rotation did not
exceed 1°.

Table 2: Experimental results with synthetic d&access rate and the number of function evaluaiensase are
averaged over 500 runs

all rotations rotation up to71/4
method
success rate # evaluations success rate  # evalsati
downhill-simplex = 0.338 82 0.864 83
Powell 0.264 349 0.784 338

The experimental results in table 2 suggest thainthl-simplex turns out to be a better choice. The
higher success rate and the lower computation asttwo powerful arguments. The high success rate
implies, that a few starting configurations arefisiént to find the global minimum. It also turnsitahat an
additional Gaussian noise does not have any noiimplact on the success rate of the algorithm.

5. APPLICATIONS

In this section we are going to describe some werld alignment problems of multi-modal data forigtn
our method can be successfully used.

5.1 PET/CT-Matching

The research project FUNMIG (Fundamental proces$aadionuclide migration) studies the behavior of
inserted radioactive elements in diverse rocks. Témuilts of computer simulations, which predict the
migration of the radioactive substance, should dmpared with experimental results in order to eatu
correctness and accuracy of the underlying model.

The inner structure of a rock has been investigdtgdmeans of CT, whereas PET was used for
monitoring the diffusion of the radioactive elengrBecause the two measurements were carried amt fr
within two different coordinate systems (and asaten of fact in two different cities), there i®thecessity
to find the right transformation in order to beeatd compare the data (Ulenkampff et al (2008)).

The CT-record of the rock is available as a Boolgadel. The hollow voxels are denoted by 1, the
massive voxels by 0. This dataset must be matchigd v PET records. Each record describes the
configuration of the radioactive elements in thekréor a fixed point in time. The values of the et can
vary between 0 (nonradioactive) antf Qvery radioactive). All PET-measurements have besmied out
from within the same coordinate system.

We assume that high radioactivity (the term "highbduld be seen in relationship to the radioactiuity
the other voxels) can be reached only in hollow elex because only there a large accumulation of
radioactive elements is possible. It is indeedkalre, that some thin fissures have not been ergidtby
CT, but still can contain a non-negligible amouhtadioactive atoms. However, the radioactivitysoich
voxels should not be very high. On the other hainel,radioactive material does not spread over thelev
crevice; therefore hollow voxels exist that are caitaminated.

334



IADIS International Conference Applied Computing 2009

These considerations lead us to the objective iomct

#(@,¢)= D, p(X)|c(x)-1F, 1)(

p(X)>v
where ¢ denotes the transformed CT dgdadenotes the PET data amdthe threshold from which on we
consider a voxel as being radioactive. The objecfisnction punishes voxels, that are considerebeto
radioactive (i.e. p(X)>v) but are not hollow. According to our assumptiohat higher radioactivity

increases the probability that a voxel is hollohe punishment is severer for massive voxels with hi
radioactivity. This simple approach is sufficieataccomplish a successful matching, as the left Isée of
figure 1 illustrates. Further details and resudts be found in Dranischnikow (2008).

5.2 MRI/CT Matching

The next application of our registration methodsesi in medical science. The lung of a patient lenb
examined with the help of two different methodsn@entional CT acquires the tissue of the lung wagre
inhaled 3He gas made visible by means of magnesicmance imaging (see Kauczor et al (1997)) dethiets
parts of the lung with proper function. Merging the datasets would help to diagnose the statedidease
more precisely and choose a more adequate treatment

A certain resemblance to the problem above is etideomparing this scenario to the above, the lung
plays the role of the crevice and the 3He gas ¢k of the radioactive material. With this inter@atéon the
objective function (1) can be reused and againveidi successful matchings, as figure 1, right-hsidd,
illustrates. More details and results are provigeBranischnikow (2008).

Figure 1. On the left-hand side: The CT and PET (&®eminutes) datasets are successfully matchest. \ilume
shows the PET data, where red color correspontdigtoradioactivity. Second volume shows the matghiith the CT
data, where the crevice is depicted brown. Thiddme shows the surface of the radioactie&els matched with the C
data. On the right-hand side: Four slices throtghung of a patient: gray color displays the limghe CT data, the
more intense the red color the higher the concéoitraf 3He.

5.3CT-Fusion

The last application of our method copes with & fasm the field of dentistry. Here sometimes afecb
(usually the head of a patient) is too large foramailable cone beam CT with small or medium siekd fof
view. Thereforet is necessary to perform two or more measureméyitsrwards the small datasets should
be merged into one large dataset. Figure 2 (lefdhside) depicts, how this task can be reducedéo t
alignment problem of the shared region.

We choosef = first dataset,g := second dataset and
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_ (LXOA
WR=10 50 A

whereby A denotes the (estimated) shared regiotwofdatasets. These definitions allow us to use our
algorithm in order to merge the small volumes iatbigger one. The results are shown in figure 2hen
right-hand side.

—
Figure 2. Left-hand side: The solution for the mfigent problem of the shared region enables theregtjmerging of
two datasets. Right-hand side: The result of mertirmysmall datasets into one big record of a jawo possibilities to
expand the data are shown. The left volume congbletth parts of the right volume and the other vaagund. The
accuracy of the merging as well as the junctiortdgarly visible.

6. CONCLUSION

In this paper we presented a new method to registdtimodal data. Our approach is based on a dpecia
metric that makes it possible to neglect subseth®fata that are for sure dissimilar. The progasetric

has been successfully used for matching multi-maldahsets. Experiments showed that this approach is
applicable for PET/CT- and MRI/CT-matchings. Thgaaithm also operates on single-modal data and can
be applied to register an object/pattern in anmediisional space.

The main advantage of our approach is the podyilidi fft-accelerate the search in some degrees of
freedom. In this paper we considered the acceteraif the search for the translational movemenickvh
resulted in fewer local minima of the new objectfuaction. This leads to a better performance imgeof
success rate of matching as well as in terms ofinue.

A further improvement can be achieved by using Idraardware such as a GPU. A speedup factor up
to 25 could be achieved using modern commodity ljcgphardware. Thus, the utilization of GPUs for
computation, because of the impressive performémaeGPUs offer at a very modest financial cost lsan
an alternative to the use of expensive hardwark ascombined PET/CT- or MIR/CT-scanner.

The proposed strategy for parallelization can aklsased for other fft-accelerated algorithms siuctha
phase correlation method and therefore can sultarspeed up those applications.
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