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Figure1: Wepresentanew techniqueto extracthighquality trianglemeshesfrom volumerepresentationsof geometricobjects.The
two maincontributionsareanenhanceddistance�eld representationandanextendedMarching Cubesalgorithm. Theabove �gures
show reconstructionsof thewell-known “f andisk”datasetfrom its distance�eld representation.Thedistance�eld hasbeensampled
onauniform65� 65� 65 grid. Thefarleft imageshowsthestandardMarchingCubesreconstruction,centerleft is thereconstruction
by thesamealgorithmbut appliedto theenhanceddistance�eld with thesameresolution.Centerright shows theresultof our new
extendedMarchingCubesalgorithmappliedto theoriginal volumedata,and�nally on thefar right we show thereconstructionby
ournew algorithmappliedto theenhanceddistance�eld. Theapproximationerrorto theoriginalpolygonalmodelis below 0:25 %.

Abstract

The representationof geometricobjectsbasedon volumetricdata
structureshasadvantagesin many geometryprocessingapplica-
tionsthat require,e.g.,fastsurfaceinterrogationor booleanopera-
tionssuchasintersectionandunion. However, surfacebasedalgo-
rithmslikeshapeoptimization(fairing)or freeformmodelingoften
needatopologicalmanifoldrepresentationwhereneighborhoodin-
formationwithin thesurfaceis explicitly available. Consequently,
it is necessaryto �nd effective conversionalgorithmsto generate
explicit surfacedescriptionsfor the geometrywhich is implicitly
de�ned by avolumetricdataset.Sincevolumedatais usuallysam-
pled on a regular grid with a given stepwidth, we often observe
severealiasartifactsat sharpfeatureson theextractedsurfaces.In
this paperwe presenta new techniquefor surfaceextraction that
performsfeaturesensitivesamplingandthusreducesthesealiasef-
fectswhile keepingthesimplealgorithmicstructureof thestandard
Marching Cubesalgorithm. We demonstratethe effectivenessof
thenew techniquewith a numberof applicationexamplesranging
from CSGmodelingandsimulationto surfacereconstructionand
remeshingof polygonalmodels.

1 Intr oduction

Therearetwo majorclassesof surfacerepresentationsin computer
graphics:parametric surfacesand implicit surfaces. A paramet-
ric surface is usually given by a function f that mapssome2-
dimensional(maybenon-planar)parameterdomainWinto 3-space
while an implicit surface typically comesas the zero-level iso-
surfaceof a 3-dimensionalscalar�eld f (x;y;z) (volumerepresen-
tation). From an abstractpoint of view, parametricsurfacesare
de�ned astherange of a functionandimplicit surfacesarede�ned
asthe kernel of a function. Therefore,someoperationsaremuch
easierto performoneitherrepresentation.

For parametricsurfaces,e.g.,it is very easyto enumeratepoints
on the surfaceby evaluatingthe function f at differentparameter
valuesin thedomainW. Neighboringor ”geodesicly”nearbysam-
plesp1 = f(u1;v1) andp2 = f(u2;v2) canbeidenti�ed bymeasuring
thedifferencesof thecorrespondingparametervalues(u1;v1) and
(u2;v2). However, given a point p in 3-spaceit is not thateasyto
checkif this point lies on the parametricsurfaceor not. On the
otherhand,checkingif agivenpointp liesonanimplicit surfaceis
trivial sincewe just have to evaluatef (p). However, enumerating
pointsonanimplicit surfaceis not straightforward.

Thechoiceof thebestsuitedsurfacerepresentationconsequently
dependson theexpectedoperationpro�le in a speci�c application.
Nevertheless,to obtainmaximum�e xibility , it is necessaryto de-
velop algorithmsfor theconversionbetweenboth representations.
Conversionfrom parametricto implicit requiresto computethesur-
face'sdistance�eld [25] whileconversionfrom implicit to paramet-
ric is usuallydoneby �nding surfacesamplesandconnectingthem
to a polygonalmesh[3, 39]. Higher orderparametricrepresenta-
tions suchasNURBS areusuallyconstructedin a secondstepby
surface�tting techniques[18].

In thispaperweproposeanew techniquefor theconversionfrom



thevolumerepresentationof anobjectto thepolygonalmeshrep-
resentationof its surface. The surfaceextraction algorithm is an
extensionof thewell-known Marching Cubesalgorithm[21] with
anenhancedqualityof theoutputmesh.

Themajormotivationfor thedevelopmentof thenew technique
aretheseverealiasartifactsthatcanbeobserved at sharpfeatures
of the convertedsurfaces. Theseartifactsaredue to the fact that
Marching-Cubes-typealgorithmsprocessdiscretevolumedataand
thesamplingof theimplicit surface f (x;y;z; ) = 0 is performedon
thebasisof a uniform spatialgrid. Figure1 shows theeffect on a
CAD example.In a preprocesswe convertedthewell-known ”f an-
disk” modelinto avolumerepresentationby evaluatingits distance
�eld on a uniform 65� 65� 65 grid. Whenconvertingtheimplicit
representationbackto a polygonalmeshby usingthestandardMC
algorithm, the reconstructionnear the sharpfeaturesis very bad
(far left imagein Fig. 1). The sizeof theseartifactscould be re-
ducedby re�nementof the underlying3D grid but the basicalias
problemwill not besolvedsincethesurfacenormalsof therecon-
structedmeshwill not converge to thenormal�eld of theoriginal
3D model.

Thecentralcontributionsof this paperare:
� Weproposeanenhancedrepresentationof thediscrete
distance�eld: Insteadof usinga scalar distancevalue
for eachgrid point of a uniform spatialgrid, we store
directeddistancesin x, y, andzdirection.Thisallowsus
to �nd moreaccuratesurfacesamplescomparedto the
approximatesamplesobtainedby linearinterpolationof
thegrid values.As it turnsout, thegenerationandhan-
dling of directeddistance�elds is no morecomplicated
thattheprocessingof scalardistance�elds.
� We presentan ExtendedMarching Cubesalgorithm
thatdetectsthosegrid cells throughwhich a sharpfea-
ture (edgeor corner)of the consideredsurfacepasses.
Basedonthelocaldistance�eld informationandits gra-
dient, additionalsamplepointslying on the featureare
computedandinsertedinto themesh.Consequentlywe
obtaina noticeablyimproved approximationof the un-
derlying surface(cf. Fig. 1) with signi�cantly reduced
aliasand the guaranteethat the surfacenormalsof the
approximationquickly convergeto theoriginalsurface's
normals. The necessarygradientinformation can be
sampledfrom the original distance�eld or estimated
from a tri-linear interpolant.

Thealgorithmicstructureof theextractionalgorithmis identical
to the original Marching Cubesalgorithm, i.e., every cell of the
discretedistance�eld is processedseparatelyanda surfacepatch
is generatedbasedon local criteria only. The collectionof these
smallpieceseventuallyyieldsatrianglemeshapproximationof the
completesurface.

Bothcomponentscanbeusedindependentlyto improve thesur-
faceextraction, i.e., standardMarching Cubesappliedto the en-
hanceddistance�eld representationaswell astheextendedMarch-
ing Cubesappliedto standarddistance�elds bothimprovethequal-
ity of the resultingmeshto a certaindegree. The bestresultsare
obtainedif bothcomponentsarecombined(cf. Fig. 1).

We will startwith a brief overview of relatedwork in the con-
text of polygonalsurfaceextractionfrom volumedata.In Section3
we will thenmotivateandjustify our alternative representationof
thedistance�eld functionwhich eliminatestheapproximationer-
ror that is introducedby samplinga piecewise tri-linear function
insteadof the original distance�eld. In Section4 we explain the
detailsof our extendedMarchingCubesalgorithm that generates
a featuresensitive trianglemeshapproximationby takingthelocal
gradientof thedistance�eld into account.Eventually, in Section5
we will show a numberof applicationsthatdemonstratetheeffec-
tivenessof our algorithm. Theexamplesincludethegenerationof
high quality trianglemeshmodelsfor implicitly de�ned CSGob-
jects,thesimulationof milling processes,thesurfacereconstruction

from scatteredpoint cloudsandthe remeshingof polygonalmesh
models.The varietyof applicationsindicatesthe �e xibility of the
algorithm.

2 Related work

The basic conceptbehind volume representationsfor geometric
modelsis that they characterizethe whole spaceenclosingan ob-
ject. By this they areindependentfrom theactualsurfacetopology
andthis is why volumerepresentationsarepreferredin applications
wherethetopologyof anobjectcanbecomplicatedor evenchanges
duringanoperation.

There are different conceptualframeworks for volume-based
(implicit) surfacerepresentations,amongthem are algebraicsur-
faces[4], radialbasisfunctions[42] andvoxelizations[5, 15, 22].
In any case,a surfaceSis representedasthezero-level iso-surface
of a scalarvaluedfunction f : IR3 ! IR. To ef�ciently processvol-
umerepresentations,onegeneratesa discreteapproximationof the
continuousscalar�eld f by samplingthefunctionona suf�ciently
�ne spatialgrid gi; j;k.

In the areaof volume graphics[13, 15, 26, 34], techniques
have beeninvestigatedto usevolumerepresentationsasa univer-
salgraphicsprimitive andto visualizeandmodify suchrepresenta-
tionsdirectly without intermediateconversion. However, in many
geometricmodelingand processingapplications,explicit surface
representationsare necessaryto satisfy the geometricquality re-
quirementsand to provide direct accessto inherentsurfaceprop-
ertiessuchas the geodesicneighborhoodrelationanddifferential
geometriccharacteristics(e.g.curvatures).Consequently, muchef-
fort hasbeenspendto developef�cient and�e xible algorithmsfor
theextractionof explicit surfaceinformationfrom volumedatasets.

Two subproblemshave to besolved in this context: �rst, �nd a
densesetof surfacesamplesandthenconnectthemin a topologi-
cally consistentmannerto obtainasuf�ciently closeapproximation
of the original surfaceS. In generalwe distinguishbetweengrid-
basedtechniquesandgrid-lesstechniques.

Figure2: Theadaptive octreere�nementyieldsa setof �nest-level
cellswhoseunioncompletelycontainsthesurfaceS. Any algorithm
appliedto thevolumerepresentationof thesurfacecanberestricted
to thesecells.

Grid-lesstechniquesstartwith someinitial polygonalmeshap-
proximationof thesurfaceSthatis iteratively improvedby attract-



ing themeshverticesto thesurfaceS. Thescalar�eld f servesas
a potential�eld to guidethemovementof thevertices.Sincethis
attractingforceactingon themeshverticescanbecombinedwith
a regularizing forcewhich tendsto improve theaspectratio of the
triangles,grid-lesstechniquesusuallyleadto highqualitymeshesif
theunderlyingsurfaceSis smooth[23, 30, 40, 43]. However, in the
presenceof sharpfeaturesin thesurface,aliaseffectsbecomevis-
ible which arepartially dueto the�nite discretizationof thescalar
�eld f but alsodueto thefact thatmeshverticesarenot explicitly
attractedto thosefeatures(andhenceverticeshit the featuresonly
statistically).

The grid-basedtechniquesextract a pieceof the surfaceS for
eachcubiccell in thegrid gi; j;k. Surfacesamplesarecomputedby
(approximate)intersectionof the cell edgeswith the surfaceand
a triangle meshis generatedthat connectsthesesamples. Most
grid-basedtechniquesareconceptuallyderivedfrom theMarching
Cubesalgorithm[21] wherea pre-processedtriangulationis stored
in atablefor all possiblecon�gurationsof edgeintersections.Many
variantsof this basicalgorithmhave beenpublishedwhich resolve
ambiguities[32, 33] or suggestalternative waysto approximatethe
surfacesamples[31].

Sincethe complexity of the uniform grid gi; j;k increasescubi-
cally, with decreasingstepwidth h, oneoftenadaptsthesampling
densityto thelocalgeometricsigni�cancein thescalar�eld f . Hi-
erarchicalsamplingschemeslike the octree techniquestart with
a very coarseroot cell. This cell is adaptively re�ned to capture
moreandmoredetailsof thefunction f andhenceof thesurfaceS
(cf. Fig. 2). The adaptive re�nement of the octreedatastructure
allows the MarchingCubesalgorithmto checkon a rathercoarse
discretizationlevel if relevant partsof the geometryarecontained
in thecurrentcell or its descendants[20].

If the consideredcell lies completelyinsideor completelyout-
side the object then further re�nement doesnot improve the ap-
proximationof thesurface.Thissimplecriterionyieldsauniformly
re�ned ”crust” of �nest-level cellsaroundthesurfaceS(cf. Fig. 2).

In [13, 37] thecomplexity of theadaptively re�ned octreeis fur-
therreducedby subdividing cellsonly in curvedregionsof thesur-
face. However, althoughthis optimizesthe sparsityof the octree
representation,it implies somedif�culties sincethe piecewise tri-
linear interpolantof the grid datain the vicinity of the surfaceis
no longer continuousand henceseveral specialcaseshave to be
handled.

Ournew surfaceextractionalgorithmis anextensionof thestan-
dardMarchingCubestechniqueandhencegrid-based.It appliesan
adaptive re�nementstrategy which splitsonly thosecellsthatcon-
tainapieceof thesurfaceS. By thisweobtainacrustof �nest level
cells aroundthesurfaceandgenerateoneor moresurfacepatches
for each.Sincewe processevery cell separatelywe canconceptu-
ally assumewe have a uniform grid andtheadaptive octreetraver-
sal enumeratesa partof its cells. This simpli�es the explanations
in the following sections.Nevertheless,the presentedtechniques
shouldalwaysbeunderstoodto beembeddedin anadaptive octree
traversalscheme.

3 Distance �eld representation

For a given surfaceS� IR3 a volumerepresentationconsistsof a
scalarvaluedfunction f : IR3 ! IR suchthat

[x;y;z] 2 S ( ) f (x;y;z) = 0:

If we assumethat f is a continuousfunction then S is a surface
without boundaryandcanbe consideredasthe outersurfaceof a
solidobject.

Obviously, the function f is not uniquely de�ned for a given
surfaceS. Onenaturalchoice,however, is thesigneddistance�eld

functionwhich assignsto every point [x;y;z] 2 IR3 its distance

f (x;y;z) := dist([x;y;z];S)

with a positive signfor pointsoutsidetheregion enclosedby Sand
anegative signfor pointsinsideS.

Basedon this representationmany operationslikepoint location
or booleanoperationscanbeimplementedquiteef�ciently , e.g.,

[x;y;z] 2 S1 \ S2 , maxf f1(x;y;z); f2(x;y;z)g = 0

[x;y;z] 2 S1 [ S2 , minf f1(x;y;z); f2(x;y;z)g = 0

[x;y;z] 2 S1 nS2 , maxf f1(x;y;z); � f2(x;y;z)g = 0

whichis thereasonwhy distance�eld representationsareverypop-
ular in solidmodelingapplications.

Thestandardway to storethedistance�eld f for a surfaceS in
anef�cient datastructureis to samplef on a uniform spatialgrid
gi; j;k = [i h; j h;kh]. Thesampleddistances

di; j;k = f (i h; j h;kh)

canbeinterpolatedoneachgrid cell

Ci; j;k(h) = [i h; (i + 1) h] � [ j h; ( j + 1) h] � [kh; (k+ 1) h]

by atri-linearfunctionsuchthatweobtainapiecewisetri-linearap-
proximationf � to theoriginaldistance�eld f anda corresponding
surfaceS� de�ned by f � (x;y;z) = 0 whichapproximatesS.

The Marching Cubesalgorithm generatesa triangle meshap-
proximationof S� from f � by exploiting the fact that the piece-
wisetri-linear function is actuallylinear alongeachedgeof a cell
Ci; j;k(h). Hence,samplepoints on the surfaceS� can be found
quite easilyby linear interpolationof the distancevaluesdi; j;k at
two neighboringgrid pointsgi; j;k.

Themajorlimitation of thissimpletechniqueis thatthesamples
onS� arenotnecessarilycloseto Sin thevicinity of sharpfeatures.
Figure3 showsanextremeexamplein two dimensions,i.e.,contour
extractionfrom a two dimensionaldistance�eld. Herethedistance
�eld interpolationfailsbecausebothgrid points�nd theirminimum
distancein differentdirections.This directionalinformationis not
capturedby the scalarvalueddistancesamplesandhencethe in-
terpolant f � is an insuf�cient approximationof the true distance
�eld f . Figure5 shows this effect in a threedimensionalexample.

Figure3: Considertwo neighboringgrid points(green)in thevicin-
ity of a sharpfeature(corner)of thecontourS(red). Samplingthe
scalarvalueddistancefunction f atbothgrid points(blue)andesti-
matingthesamplepoint by linear interpolationleadsto a badesti-
mation(black)of thetrueintersectionpointbetweentheredcontour
andthegreencell edge.

To improve theapproximationk f � f � k onecouldre�ne thedis-
cretizationgrid h ! h0 < h or switch to higherorder polynomial
interpolantswithin eachcellCi; j;k(h). However, in the�rst casethe
improvedaccuracy of thesamplescomeswith a re�ned triangula-
tion andhencea largernumberof trianglesin theoutputmeshand
in thesecondcasethelocal computationsaregettingmorecompli-
catedwhichaffectstheoverall simplicity of thealgorithm.



Thereforewesuggestathird alternativeto avoid thesedif�culties
by usinga differentdiscretizationof thedistance�eld f which we
call thedirecteddistance�eld . For thisdatastructureweexploit the
fact that theMarchingCubesalgorithmcomputessurfacesamples
only onthecell edges.Consequently, it is notnecessaryto generate
a continuousfunction f � which approximatesf in the interior of
thecells.

For thedirecteddistance�eld, we storeat eachgrid point gi; j;k
threedirecteddistancesin (positive) x, y, andz directioninsteadof
thescalarvalueddistancesdi; j;k , i.e.,

di; j;k =

"
distx
disty
distz

#

Negativedistancevaluesagainindicatethatthegridpointliesinside
theobjectwhile positive distancespointoutside.

Theprocessingof directeddistance�elds is identicalto thepro-
cessingof scalardistance�elds. The min/max computationsfor
thebooleanoperationshave to beappliedcomponentwiseto thedi-
recteddistances,e.g.,thedirecteddistance�eld for S= S1 \ S2 is
obtainedby

di; j;k =

"
maxf dist1;x;dist2;xg
maxf dist1;y;dist2;yg
maxf dist1;z;dist2;zg

#

:

TheMarchingCubesalgorithmcanbeappliedto thedirecteddis-
tance�eld datastructurewithout signi�cant modi�cations. Thelo-
cal con�guration canstill be derived from the sign patternat the
cell's cornerssincethe threedirecteddistancesat one grid point
alwayshave thesamesign(inside/outsidestatus).

The intersectionpoint, e.g.,for thecell edgebetweengi; j;k and
gi+ 1; j;k is computedby

s = (1� jdi; j;k[x]j =h) gi; j;k + (jdi; j;k[x]j =h) gi+ 1; j;k

andis valid if di; j;k[x] anddi+ 1; j;k[x] have oppositesigns.
Althoughstoringthedirecteddistancesdi; j;k increasesthemem-

ory consumptionby a factorof three,we have the advantagethat
samplepoints lying exactly on the surfaceS areavailable for the
MarchingCubesalgorithm (cf. Fig. 4). As demonstratedin Fig-
ure5, this improvesthequalityof theextractedsurfacesigni�cantly
in thevicinity of sharpfeatures.

Figure4: If westoredirecteddistances(blue)in x andy directionat
every grid point (green),we cancomputeexact intersectionpoints
of thecontourwith thecell's edges.

3.1 Generation of directed distance �elds

It appearscomputationallymoreinvolved to evaluatethe directed
distancescomparedto thescalardistances.However, for mosttypes
of input datait turnsout thatdirecteddistancesarerelatively easy
to compute.In fact,theaveragecomputationaleffort is lower than
for scalarvalueddistancecomputations(wherewe have to search
in all directions)andalsolower thanfor generalray tracing(where

intersectionscanhappeneverywherealongtheray). We will focus
oncomputationalmethodsfor thedistance�eld evaluationalthough
recently, graphicshardwareacceleratedtechniqueshave beensug-
gested[11].

Two differentapproachesarepossible. One is to computethe
intersectionsfor eachcell edgeseparately. Here we can exploit
the locality of the interrogationsinceeachedgehasonly a small
lengthh. Notice that for all discretevolumerepresentations,dis-
tanceswith anabsolutevaluelargerthanh areirrelevantsincethey
arenot usedfor samplepoint computationsduring the Marching
Cubesalgorithm.

Thesecondapproachis to combinecollinearcell edges,e.g.,to
concatenatethegrid pointsg0; j;k; : : : ;gn; j;k into oneaxisalignedray
g(l ) = g0; j;k + l [1;0;0] andthencomputeall intersectionsalong
this ray. Theintersectionpointsarethenusedto storethedirected
distancesat thecorrespondinggrid pointsgi; j;k.

Implicit surfaces For ageometricobjectde�ned by animplicit
function f we �nd thedirecteddistancesfor a grid point by a uni-
variateroot�nding scheme[24] whichbecomesparticularlysimple
sincewe only searchalongthex, y, or z axis,e.g.,for theedgebe-
tweenthegrid pointsgi; j;k andgi+ 1; j;k, we have to solve

f̃ (t) = f (i h+ t; j h;kh) = 0; t 2 [0;1]:

For a reasonablysmall grid sizeh we can�nd a suf�ciently good
startingvaluefor t andNewton iterationswill quickly converge to
theexact solution. Notice that closestpoint searchfor an implicit
surfaceis muchmorecomplicatedthanray intersection[4].

Polygonal meshes If ourgeometricobjectis givenby apolyg-
onal mesh,the directeddistancecomputationcan useall the ac-
celerationtechniquesthathave beendevelopedfor fastray-tracing
algorithms[2]. In our implementationweusea binaryspaceparti-
tion tree[35] to quickly �nd thetriangleswhich arecandidatesfor
anintersection.For eachgrid pointgi; j;k weidentify thetrianglesin
a h+ e sphereandthencomputeintersectionswith theaxisaligned
raysin positive x, y, andz directions.

Sincewe know that our inquiry points gi; j;k lie on a uniform
spatialgrid we can exploit this regular structureto optimize the
BSP-tree.In fact,usingtheoctreespacepartitioningimpliedby the
grid cellsCi; j;k(h) themselvesseemsto betheoptimum.

Point clouds Volumerepresentationsfor pointcloudsareanef-
fectivetool whichisusedin many surfacereconstructionalgorithms
[7, 17]. To de�ne a signeddistanceto thepoint cloud,eachpoint
hasto beequippedwith a properlyorientednormalvector[1, 17].

Togetherwith its normaleachpoint de�nesa tangentplaneele-
mentandthesigneddistancefrom a querypoint gi; j;k to thecloud
is de�ned asthesigneddistanceto thetangentplaneof thenearest
neighbor.

Computingdirecteddistancesrequiresthe intersectionof rays
with thepoint cloud. In our implementationwe useda variationof
thetechniqueproposedin [9, 36].

4 Extended Marching Cubes

Even if we areableto computeexactsurfacesampleswith thedi-
recteddistance�eld datastructure,themajorproblemwith any dis-
cretizationof a distance�eld f remains.This is theoccurrenceof
aliaseffectsat sharpfeaturesof theunderlyingsurfaceS. In prin-
ciple, we could reducethe approximationerror of the surfaceS�

extractedfrom the discretized�eld f � by excessively re�ning the
grid cells in the vicinity of the feature. However, the normalsof
the extractedsurfaceS� will never converge to the normalsof S
(cf. Fig. 6).



Figure5: Thecenterandright surfacesaregeneratedby theMarchingCubesalgorithmappliedto theuniformly sampleddistance�eld of the
objecton theleft. In thecenter, scalardistancevaluesarestoredfor eachgrid point while on theright threedirecteddistancesarestoredto
enableexactsurfacesampling.This reducesthealiaserrorsto a smallregionaroundthefeature.

Figure6: Alias errorsin surfacesgeneratedby theMarchingCubes
algorithmaredueto the�x edsamplinggrid. By decreasingthegrid
size,theeffectbecomeslessandlessvisibledueto theconvergence
of S� to S but the problemis not really solved sincethe normal
vectorsof S� do notconvergeto thenormalsof S.

Thereasonfor this behavior is thefactthat thestandardMarch-
ing Cubesalgorithmcomputessurfacesampleson a globally uni-
form grid that cannotbealignedto the featuresof theobject. Lo-
cally adaptingthesamplinggrid to thefeaturesof anobjectis criti-
cal sincewe donot wantto losetheadvantageouspropertiesof the
basicalgorithmlike simplicity andef�ciency.

Using higherorderapproximantsto the local surfacepatchin-
steadof piecewise linear meshesdoesnot improve the situation
sincethesharpfeatureof anobject's surfaceSareexactly theloca-
tionswherethesurfaceis not adifferentiablemanifold.

However, whatwe cando is to useadditionallocal information
from thedistance�eld f andto extrapolatethebehavior of thesur-
facenearthefeature.Figure7 depictsthetechniquein two dimen-
sions. Insteadof directly connectingthe intersectionpointsof the
contourwith thecell edges,weadditionallyusethecontournormal
to computea linearlocalapproximation(tangentelement) for each
intersectionpoint. Thenintersectingthetwo tangentsyieldsanad-
ditionalsamplingpointcloseto thesharpfeature.If weincludethis
additionalsampleinto our piecewise linearcontourapproximation
we obtaina much betterreconstruction.A similar techniquefor
2-dimensionalcontourcurve reconstructionhasbeenproposedin
[38]. While their methodis basedon higherorderpolynomialin-
terpolantsto severalconsecutivesamplepoints,weusehigherorder
datafrom onesinglesample.

This effect did not happenby chance.As we statedearlier, the
surface/contournearasharpfeatureis notadifferentiablemanifold.
However, for reasonablegeometricmodels,we canat leastassume
thatthesurfaceis piecewisedifferentiable.Hence,usingpoint and
normal information to generatetangentelementsyields goodap-
proximationson both sidesof the featureand the intersectionof
theseapproximationsgives a good estimateof the actual feature
position.

Fromapproximationtheorywe know thata piecewise linearin-

Figure7: By usingpoint andnormalinformationon bothsidesof
thesharpfeatureonecan�nd a goodestimatefor thefeaturepoint
at theintersectionof thetangentelements.

terpolantto asmoothsurfaceconvergeswith theorderO(h2) where
h measuresthesamplingdensity. In ourcaseh is thesizeof thegrid
cell. If weuniformly re�ne thegrid h ! h=2 we canexpecttheap-
proximationerror the be reducedto 1=4. However, in thosecells
with sharpfeaturesthe surfaceis not differentiableandhencethe
approximationorder dropsdown to O(h) which meansthe error
decreasesmuchslower (in factproportionalto thegrid size).

Usingthetangentelementapproximation,however, increasesthe
local convergencerate in thosefeaturecells sincethe (quadratic
order)approximationis doneonbothsidesof thefeatureseparately.
Of coursefor thisargumentto bevalid wehaveto assumethatthere
is only onesharpfeaturewithin eachcell but, again,thiswill bethe
casefor reasonablemodelsandsuf�cient grid re�nement.

In our extendedMarching Cubesalgorithm we generalizethis
univariatefeaturepoint extrapolationtechniqueto surfaces.How-
ever, thesituationis morecomplicatedsincedifferenttypesof fea-
tureshave to be handledin a different manner. Thesetypesare
featureedgeswheretwo smoothsurfaceregionsmeetalongasharp
featureline andcorners wheremorethantwo smoothcomponents
meetor, equivalently, wheremorethantwo featureedgesintersect.

Justlike the standardMarchingCubes,the extendedalgorithm
processeseachcell Ci; j;k(h) separately. For eachcell we �rst have
to checkif a featureis presentand if yes, which type of feature
(cf. Fig. 8). This classi�cationof the cells is similar to theclassi-
�cation of cells in theextendedoctreedatastructure[6] wherethe
leavesof anoctreefor a CSGmodelaretaggedasfacecells, edge
cells, andvertex cellsrespectively.

If the cell doesnot containa sharpfeature,we generatea local
trianglemeshpatchby using the standardMarchingCubestable.
However, if a featureis present,we usethegradientinformationat
theedgeintersectionpointsto de�ne local tangentelements.Based
on theseplaneswe computeonenew samplepoint closeto theex-
pectedfeature.Insteadof usingthestandardtriangulationwe gen-
eratea trianglefanwith thenew vertex asits center.

By this modi�cation of the MarchingCubesalgorithmwe still



Figure8: Wheninsertingadditionalfeaturesamplesin somecells
during the extendedMarchingCubeswe distinguishbetweendif-
ferent typesof featurecon�gurations: edge featuresareshown in
greenandcornerfeaturesin red.

usetheglobaluniformsamplinggrid to computepointson thesur-
faceSbut we includeadditionalsamplepointsin thosecellswhere
weexpectsharpfeatures.Hencewecombinetheadvantagesof reg-
ulardatastructureswith the�e xibility of adaptivesampling.Notice
thatfor typicalCAD modelsthefeaturesamplingwill happenonly
in very few cellsalongthefeaturelines.

Figure9: The featuresensitive samplingin the extendedMarch-
ing Cubesalgorithmworks in threesteps.First, the cells/patches
that containa featureare identi�ed (left). Thenonenew sample
is includedpercell (center)and�nally oneroundof edge�ipping
reconstructsthefeatureedges.

Figure9 shows the differentstagesof the algorithm. Sincethe
featuresamplesareinsertedinto themeshasthecenterof a triangle
fan without consideringneighboringcells, the triangleconnectiv-
ity of the resultingmeshdoesnot re�ect thepresenceof features.
Hence,we have to applya postprocessingstepto themeshwhere
someof themeshedgesare�ipped. The �ipping criterion is quite
simple: eachedgeis �ipped if it will connecttwo featuresamples
after the �ip. The edge�ipping doesnot produceany undesired
sideeffectssincetherestrictionto onefeaturesamplepercell guar-
anteestheir suf�cient separation.After the�ipping, theedgescon-
nectingfeaturesamplesprovide an explicit representationof the
featurelinesaspolygonswithin thetrianglemesh.In Figure10we
show theresultsof theextendedMarchingCubesalgorithmfor the
samedatasetthathasbeenusedin Figure5.

After this generaldescriptionof the algorithm, the remaining
technicalquestionsare,how to dothefeatureclassi�cationandhow
to computethe featuresamplepoint. Therearedifferentwaysto
implementthis functionality. Thesolutionsthatwepresenthereare
designedto not containany unintuitive parameterand to �nd the
optimalpositionfor thefeaturesample.

4.1 Surface normals

Featuredetectionandsamplingboth needadditional information
aboutthesurfaceS. In additionto thepositionof thesamplepoints,

their normalvectorsarerequiredto constructthe local tangentel-
ements.We have shown in the lastsectionhow analternative dis-
cretizationof thecontinuousdistance�eld f yieldsexactpointsam-
ples.For thesurfacenormalinformationwe have to exactly evalu-
atethegradientof thedistance�eld aswell.

Sincethe gradientinformationis only neededat thesamplelo-
cations,we canevaluatethe gradientsin advanceduring the dis-
cretizationof thedistance�eld. In our implementationwestorethe
gradientsin thesamedatastructure.

Implicit surfaces If ananalyticfunction f is known for thesur-
faceS thenthe gradientcanbe evaluatedexactly at any location.
For thiswehave to computethederivativeswith respectto all three
coordinatessymbolically. If thefunction f or its derivativesaretoo
complicatedthennumericalestimatesbasedon divideddifferences
yield suf�ciently goodestimates.

Polygonal meshes During theevaluationof the(directed)dis-
tanceto a polygonmeshwe �nd theclosestpoint on thesurfaceas
a by-product.Thenormalizedvectorpointingfrom thequerypoint
to thatclosestpoint is thenormalizedgradientof thedistance�eld.

For ourextendedMarchingCubesalgorithmwehaveto evaluate
the gradientof the distancefunction only for samplepoints lying
exactly on the surfaceS. Hence,we can simply usethe normal
vectorof thattriangleonwhich thesamplepoint lies.

Point clouds Whencomputingthedistanceto a point cloudor
whenintersectinga ray with it, we replacethescatteredpointsby
tangentelementswhich canbe consideredassmall facetsmaking
up a polygonalsurface. Hencethesituationis quitesimilar to the
distance�eld computationsfor polygonalmeshes:We�nd thegra-
dientsfor the surfacesamplesby taking thenormalvectorassoci-
atedwith thenearestscatteredpoint.

Scalar distance �elds In someapplicationsit might happen
that we get a discretizedscalarvalueddistance�eld out of some
pre-processsuchthatwe cannotaccesstheoriginal continuousdis-
tancefunction f . In thiscasewehaveto estimatethegradientsfrom
thescalardistancevaluesat thegrid points.

Therearetwo possibilities: the �rst is to computethe gradient
of the tri-linear interpolant,the secondis to estimatethe gradient
in eachgrid point by divided differencesusing neighboringgrid
points. Thesegrid point gradientscanthenbe interpolatedwithin
eachcell.

It is not obvious which methodis superiorto the other. The
secondtechniqueguaranteesacontinuousgradient�eld (which the
�rst methoddoesnot) but dueto the largersupportof the divided
differenceoperatorwecanobserveablurringeffecton thegradient
�eld whichmakesthedetectionof sharpfeaturesmoredif�cult.

4.2 Feature detection

Let s0; : : : ;sn besurfacesamplesobtainedby intersectingtheedges
of anoctreecellCi; j;k(h) with thesurfaceSde�nedby f (x;y;z) = 0.
If the constellationof the edge/surfaceintersectionindicates(ac-
cording to the standardMarchingCubestable) the occurrenceof
morethanoneconnectedcomponentthenweassumethatthesi are
asubsetof theedgeintersectionthatbelongto thesamecomponent.
Theselectionof thesi is donebasedon theMarchingCubestable.
In cells with several unconnectedcomponentswe apply the edge
detectionandfeaturesamplingfor eachcomponentseparately.

Let ni betheunit surfacesnormalsof Satsi , i.e., thenormalized
gradientsof f . Our goalis to detectif thesurfacepatchof Scorre-
spondingto thesamplessi containsasharpfeature.Onesimplebut



Figure10: Theoriginalobjecton theleft is convertedinto avolumerepresentationwith thesameresolutionasin Fig. 5. In thecenterandon
theright weappliedtheextendedMarchingCubesalgorithmwith featuresensitivesampling.Thenecessarygradientinformationis estimated
from thediscretescalardistance�eld in thecenterandevaluatedfrom theoriginal distance�eld on theright. Theresultof thecombination
of thedirecteddistance�eld with theextendedMarchingCubesalgorithmis indistinguishablefrom theoriginal.

quiteeffective heuristicto do this is to computetheopeningangle
of thenormalconespannedby theni . If

q := mini; j (nT
i n j )

is smallerthan somethresholdqsharp then we expect the surface
to have a sharpfeature. Let n0 andn1 be the two normalswhich
enclosethelargestangleandn� = n0 � n1 bethenormalvectorto
theplanespannedby n0 andn1.

Next, wehaveto determineif thedetectedfeatureis asharpedge
or if it is a cornerpoint. For this we estimatethemaximumdevia-
tion of thenormalsni from theplanespannedby n0 andn1, i.e.,we
compute

j := maxi jnT
i n� j

andtest if it is greaterthansomethresholdj corner. Thesesimple
criteria proved to be quite effective in all applicationsreportedin
Section5. Thetwo parametersqsharpandj corner arevery intuitive
sincethey canbe consideredasthresholdanglesthat measurethe
sharpnessof afeature.Thethresholdqsharpcanbechosenquitebig,
sayqsharp= 0:9, if thegradientdatais not too noisy. For stability
reasonsin the subsequentcalculations,however, it is advisableto
choosethe cornerthresholdj corner big enough,sayj corner= 0:7,
to reducethenumberof erroneousclassi�cations.This is necessary
to distinguishbetweensharpcornersandcurved featurelines. In
all our experiments,the featuredetectionworked robustly without
beingtoosensitive to theparticularchoiceof thethresholdparame-
ters.Artif actscanonly occurif edgefeaturesarewronglyclassi�ed
ascorners(cf. next section).

4.3 Feature sampling

Oncewe have the classi�cation of the currentcell Ci; j;k(h) as a
featureline (q < qsharp; j � j corner) or as a corner con�guration
(q < qsharp; j > j corner) we try to �nd a samplepoint ascloseas
possibleto the feature.As explainedabove we generatea tangent
elementfor eachsamplesi with its normal ni andplacethe fea-
turesampleat theintersectionof all tangentelements,i.e., thenew
samplep solvesthelinearsystem

[: : : ;ni ; : : :]T p = [: : : ;nT
i si ; : : :]: (1)

In generalthis systemis overdeterminedsince we usually have
morethanthreeedgeintersectionsin eachcell Ci; j;k(h). However,
at featureedgesit canalsohappenthat this systemis underdeter-
minedsinceat a perfectfeatureedge,the tangentelements[si ;ni ]
areall sampledfrom two differentplanesandhencethematrix of
normalvectorshasonly ranktwo.

To avoid the handlingof specialcases,we thereforesolve the
system(1) with thepseudo-inversebasedon thesingularvaluede-
compositionof N = [: : : ;ni ; : : :]T [16]. If the featureis classi�ed
ascornerthenthis is a very stableway to computetheoptimalfea-
turesamplepoint in the leastsquaressense,i.e. we �nd thepoint
p wheretheaverage(squared)deviation from all tangentelements
takeson its minimum.

If the featureis classi�ed asan edgewe expectoneof the sin-
gular valuesto vanishsincethe (straight)featureline lies in both
tangentplanes.However on realdatathis will almostnever happen
sincethe gradientsamplesmight be affectedby arithmeticnoise,
the surfacesnearthe featuremight be curved, or the featureline
might becurved itself. Sincetheanglecriteriausedfor theclassi-
�cation decidedfor a featureedgecon�guration, we thereforeset
thesmallestsingularvalueof N explicitly to zerothusenforcingthe
properstructureof the(now) rankde�cient system(1). By this we
suppressthein�uence of thosenormalvectorswhichstronglydevi-
atefrom theplanespannedby n0 andn1 andstabilizethesolution
of (1). Mis-classifyinganedgefeatureasacornerandconsequently
not settingthesmallestsingularvalueto zero,canleadto badesti-
matesfor p.

The pseudo-inverseof the modi�ed matrix Ñ will lead to the
leastnormsolutionof theunderdeterminedsystem,i.e. we�nd that
point p on the featureline which is closestto theorigin. In order
to guaranteethatthis point lies in a reasonablecon�guration to the
samplessi we apply a coordinatetransformto the samplesbefore
settingup thesystem(1) suchthattheir centerof gravity lies in the
origin.

Remarks Wedescribedthefeaturesamplingprocedureasa two
stepprocess.First the featureis classi�ed by the openingangles
of the normalcone. Thenthe tangentplaneintersectionin solved
basedon thesingularvaluedecompositionof thenormalmatrix N.
It is temptingto try to readoff thefeatureclassi�cationof thelocal
con�guration directly from the magnitudeof the singularvalues.
However it turnsout thatthis is averyunreliablecriterionsincethe
singularvaluesnotonly dependon theanglesbetweenthenormals
but alsoon theirdistribution.

If a featureedgepassesthrougha cell Ci; j;k(h) we canhave up
to seven intersectionpointsbelongingto thesamesurfacecompo-
nent for which we want to computeone additional featuresam-
ple. A priori we do not have any information abouthow many
of thosesampleslie on either side of the feature. This makes
the singularvalue classi�cation quite unreliablesincethe matrix
[n0;n0;n0;n0;n0;n1] hasa very different singularvalue distribu-
tion thanthematrix [n0;n0;n0;n1;n1;n1].



5 Applications

In order to demonstratethe effectivenessof our new surfaceex-
tractionschemewe will point out differentapplications.In princi-
ple, theextendedMarchingCubescanalwaysreplacetheoriginal
MarchingCubesalgorithmsinceit hasthesamealgorithmicstruc-
tureandprocessesthesametypeof input data.If thedistance�eld
gradientscannotbeevaluatedat thesamplepoints,they canbees-
timatedfrom thetri-linear interpolant(cf. Sect.4.1).

ObviouslythestandardMarchingCubesschemewill alwaysout-
performour extendedversionsincewe have to do moreinvolved
computationsfor every cell. However, the featuresamplinghasto
bedoneonly in thosecellswherea featurecon�guration hasbeen
detectedfrom thenormalconeandtheir numberwill increaseonly
linearlywith there�nementwhile thetotalnumberof cellsthatcon-
tain a pieceof the surfacegrows quadratically. Moreover, we ob-
served that thenecessaryre�nement levels for a given accuracy is
often lower with theextendedMarchingCubesalgorithmbecause
thefeaturesamplingreducestheapproximationerrorsigni�cantly.

The following table shows the relevant parametersfor the
modelsdepictedin this section.Theexecutiontimesincludeonly
the runningtimesfor the standardandextendedMarchingCubes,
respectively. The(directed)distance�elds andgradientshave been
generatedin a pre-process.The triangle count is always higher
for theextendedMarchingCubessincewe alwayschosethesame
re�nementlevel for bothalgorithms– althoughtheapproximation
errorturnedoutto bemuchlowerfor theextendedMarchingCubes.

standardMC extendedMC
secs kTris secs kTris

CSG(Fig. 11) 4.03 105 5.48 117
FanDisk (Fig. 1) 0.67 19 1.40 21
Max Planck(Fig. 14) 2.77 74 3.31 79
CAD (Fig. 15) 1.69 48 2.4 54

Figure 11: This �gure shows a CSG examplewherethe hollow
lettersaresubtractedfrom acube-shapedbaseobject.Directeddis-
tancesandsurfacenormalsare derived directly from the volume
representationof the individual parts. The right imageshows the
piecesthat are generatedin the interior of the cubeby the three
cuts.

5.1 CSG modeling

Theclassicalapplicationareafor volumerepresentationsis thede-
signof solidobjectsby booleanoperations.Everyoperationcanbe
performedby simplecomparisonof thedistancevaluesat thegrid
points.Thisalsoholdsfor thedirecteddistance�eld representation.

In our implementationwe usetheextendedMarchingCubesfor
themeshgenerationfrom aCSGmodel.Featuresensitivesampling
is very importantin this context sincethesharpedgesandcorners
indicateintersectionsof basicobjectsandcarry signi�cant design
information(cf. Fig. 11).

A very importantpracticalapplicationof this techniqueis the
simulationof milling processes.A milling tool is tracedalonga
pathandits envelopesurfacehasto begenerated.This application
is very demandingfor the solid modelingtool sincethe envelope
surfaceusuallyintersectsitself many times. The sharpridgesthat
arecharacteristicfor surfacesgeneratedby amilling machinecarry
crucial informationbecausethey areusedto ratethequality of the
NC program(cf. Fig. 12).

Figure12: Herewe show the resultof a milling simulation. The
volumerepresentationof themilling tool's envelopehasbeengen-
eratedwith boolean“join” operationsappliedto instancesof the
milling tool at different time steps. Sincethe pathof the milling
tool is piecewiselinear, theenvelopecanbeconstructedfrom cylin-
dersandspheres.Theupperimageshows thesurfaceextractedby
the standardMC algorithm, the lower imageshows the extended
MC surface. The sharpridgesarebettervisible dueto the clearly
reducedalias.

5.2 Surface reconstruction

One well-establishedtechniqueto reconstructa polygonalmesh
modelfrom anunstructuredcloudof pointsis to estimatea signed
distancefunction and then apply the Marching Cubesalgorithm
[7, 17]. As we showed in Section3.1 it is alsopossibleto com-
putedirecteddistancesandgradientinformationfrom point clouds
if normalvectorsareavailablefor thescatteredpoints.Weshow an
examplesurfacereconstructedfrom a datasetwith 200K pointsin
Fig. 13.

Sincescatteredpoint datasetsoften comefrom a 3D scanning
device,they areusuallydisturbedby noisewhichaffectsthequality
of the resulting3D models. Many optimizationtechniqueshave
beenproposedto improve thesmoothnessof polygonalmodelsby
applyinglocal �lter operations[8, 27, 41].

Formeshesthatwegeneratedwith theextendedMarchingCubes
algorithm, we not only have the pure geometricinformation but
we additionallyhave somemeshverticestaggedasfeaturepoints
andsomeedges(connectingtwo featurepoints)classi�edassharp



Figure13: Trianglemeshreconstructionfrom a 3D scanof a bust.
Theoriginal datasetconsistsof 200K scatteredpoints.On theleft
weshow theresultby thestandardMC andontheright theextended
marchingcubes.The right model is lessblurredandshows much
moredetailsaroundthemouth.

featureedges.We canexploit this informationto further improve
the surfacequality in the smoothingstepby applyinga univariate
smoothingschemeto the featurelines and a bivariatesmoothing
schemeto thenon-featureareas.If wedisallow tangentinformation
to propagateacrossfeaturelineswecanevenenhancethesharpness
of thefeatures.Figure14shows anexample.

Figure14: Theleft imageshow theresultof theextendedMC ap-
plied to a point cloud. If we low pass�lter themeshby takingthe
featureinformationinto accountwe obtainthe resulton the right.
All sharpfeaturesarewell preservedwhile in thenon-featureareas,
noiseis effectively removed.

5.3 Remeshing

Polygonalmeshesthataregeneratedat someintermediatestageof
anindustrialCAD processoftenhaveabadquality. Degeneratetri-
anglesandtopologicalinconsistenciesmake it dif�cult to usesuch
modelsin any downstreamapplication.To make this dataaccessi-
ble to otherapplicationsthanmeredisplay, we have to convert the
modelsinto enhancedtesselationsof thesamegeometrythatguar-
antee,e.g.,boundson theaspectratio of the triangularfaces.This
resamplingprocedureis usuallycalledremeshing[10, 29].

We converted a CAD model into a volume representationby
samplingits distance�eld on a uniform grid. Applying the ex-
tendedMarchingCubesalgorithmto this volumegivesa remeshed
versionof theoriginal with a uniformvertex distribution.

Oneapparentdrawbackof MarchingCubestechniquesin gen-
eral is theuniform samplingdensitywhich doesnot take the local

Figure15: Remeshingof a polygonalmesh. Theuppermeshhas
beengeneratedfrom a CAD modelandhasa very baddistribution
of triangles.Wesampledthedistance�eld for themodelona[129]3

grid and reconstructedthe surfaceby the standardMC algorithm
(secondimage).Theactualresolutionof thevolumerepresentation
canbe seefrom the sizesof the artifactsin the reconstructedsur-
face.In thethird imageweshow ourextendedMC result.All sharp
featuresarereconstructedcorrectly(qsharp= 0:9). The lower im-
ageshows the resultof a featureline preservingmeshdecimation
algorithm(errortolerance1%).

surfacecurvatureinto account. Many approacheshave beenpro-
posedto control the meshcomplexity by adaptive octreedescent
with sophisticatedre�nementcriteria[20, 37].

Similar to thefeaturesensitivesmoothingwecanexploit thefea-
tureinformationin theextendedMarchingCubesoutputto control
thebehavior of a meshdecimationpost-process.In our implemen-
tationwe usea meshdecimationschemethat is basedon edgecol-
lapsing[14, 19, 28]. Featureverticesare not allowed to change
their positionduringanedgecollapseunlessthecollapsededgeis
afeatureedge.By thisweobtaineffectively decimatedmeshesthat
preserve mostof therelevantfeatureinformation(cf. Fig. 15).



6 Conc lusions and future directions

We presenteda new meshgenerationtechniquewhich convertsa
distance�eld representationof a geometricmodel into a polygo-
nal meshrepresentation.Basedon the MarchingCubesparadigm
we derivedanextendedalgorithmthatis ableto reliablydetectand
classifysharpfeatureregionson thesurfaceandto accuratelysam-
ple thesefeaturesin orderto reducealiasartifacts.

For the standardMarchingCubestherearegeneralizationsthat
canbeappliedto adaptively re�ned balancedoctrees[20, 37]. The
problemhereis to �x thegapsthatappearin areaswherecellsfrom
different re�nement levels meet. We are planningto modify the
extendedMarchingCubessuchthat balancedoctreescanbe pro-
cessedaswell. Currently, we do useadaptively re�ned octreesbut
our re�nementcriterionalwaysguaranteesthatthe“crust” contain-
ing theactualsurfaceis re�ned down to the�nest level.

Finally, we did notoptimizeourextendedMarchingCubescode
for computationspeed.In principletherewould beplentyof room
for improvementsin variousalgorithmicstepsof our currentim-
plementation.However, we areaiming at a parallelizationof the
algorithm.Crucialdif�culties arenot to beexpectedsincethealgo-
rithm processeseachcell individually (like thestandardMarching
Cubes)andhenceparallelizationshouldbestraightforward.
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